Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers

MPG-Autoren
/persons/resource/persons241655

Antila,  Hanne
Markus Miettinen, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons195345

Kav,  Batuhan
Thomas Weikl, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons200435

Miettinen,  Markus S.
Markus Miettinen, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Antila, H., Buslaev, P., Favela-Rosales, F., Mendes Ferreira, T., Gushchin, I., Javanainen, M., et al. (2019). Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers. The Journal of Physical Chemistry B, 123(43), 9066-9079. doi:10.1021/acs.jpcb.9b06091.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-CB18-D
Zusammenfassung
Phosphatidylserine (PS) is a negatively charged lipid type commonly found in eukaryotic membranes, where it interacts with proteins via nonspecific electrostatic interactions as well as via specific binding. Moreover, in the presence of calcium ions, PS lipids can induce membrane fusion and phase separation. Molecular details of these phenomena remain poorly understood, partly because accurate models to interpret the experimental data have not been available. Here we gather a set of previously published experimental NMR data of C–H bond order parameter magnitudes, |S CH |, for pure PS and mixed PS:PC (phosphatidylcholine) lipid bilayers, and augment this data set by measuring the signs of S CH in the PS headgroup using S-DROSS solid-state NMR spectroscopy. The augmented data set is then used to assess the accuracy of the PS headgroup structures in, and the cation binding to, PS-containing membranes in the most commonly used classical molecular dynamics (MD) force fields including CHARMM36, Lipid17, MacRog, Slipids, GROMOS-CKP, Berger, and variants. We show large discrepancies between different force fields, and that none of them reproduces the NMR data within experimental accuracy. However, the best MD models can detect the most essential differences between PC and PS headgroup structures. The cation binding affinity is, in line with our previous results for PC lipids, not captured correctly by any of the PS force fields. Moreover, the simulated response of PS headgroup to bound ions can differ from experiments even qualitatively. The collected experimental dataset and simulation results will pave the way for development of lipid force fields that correctly describe the biologically relevant negatively charged membranes and their interactions with ions. This work is part of the NMRlipids open collaboration project (nmrlipids.blogspot.fi).