Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
 ZurückNächste 

Freigegeben

Zeitschriftenartikel

Global 3‐D Simulations of the Triple Oxygen Isotope Signature Δ17O in Atmospheric CO2

MPG-Autoren
/persons/resource/persons100964

Gromov,  Sergey S.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Koren, G., Schneider, L., van der Velde, I. R., van Schaik, E., Gromov, S. S., Adnew, G. A., et al. (2019). Global 3‐D Simulations of the Triple Oxygen Isotope Signature Δ17O in Atmospheric CO2. Journal of Geophysical Research: Atmospheres, 124(15), 8808-8836. doi:10.1029/2019JD030387.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-CD11-2
Zusammenfassung
The triple oxygen isotope signature Δ17O in atmospheric CO2, also known as its “17O excess,” has been proposed as a tracer for gross primary production (the gross uptake of CO2 by vegetation through photosynthesis). We present the first global 3‐D model simulations for Δ17O in atmospheric CO2 together with a detailed model description and sensitivity analyses. In our 3‐D model framework we include the stratospheric source of Δ17O in CO2 and the surface sinks from vegetation, soils, ocean, biomass burning, and fossil fuel combustion. The effect of oxidation of atmospheric CO on Δ17O in CO2 is also included in our model. We estimate that the global mean Δ17O (defined as urn:x-wiley:jgrd:media:jgrd55562:jgrd55562-math-0001 with λRL = 0.5229) of CO2 in the lowest 500 m of the atmosphere is 39.6 per meg, which is ∼20 per meg lower than estimates from existing box models. We compare our model results with a measured stratospheric Δ17O in CO2 profile from Sodankylä (Finland), which shows good agreement. In addition, we compare our model results with tropospheric measurements of Δ17O in CO2 from Göttingen (Germany) and Taipei (Taiwan), which shows some agreement but we also find substantial discrepancies that are subsequently discussed. Finally, we show model results for Zotino (Russia), Mauna Loa (United States), Manaus (Brazil), and South Pole, which we propose as possible locations for future measurements of Δ17O in tropospheric CO2 that can help to further increase our understanding of the global budget of Δ17O in atmospheric CO2.