English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Micrometeoroid Events in LISA Pathfinder

MPS-Authors
/persons/resource/persons41581

Audley,  Heather
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40430

Born,  Michael
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40441

Diepholz,  Ingo
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40460

Heinzel,  Gerhard
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40525

Hewitson,  Martin
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Karnesis ,  N.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons215671

Kaune,  Brigitte
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Korsakova ,  N.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40486

Reiche,  Jens
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons231196

Wissel,  Lennart
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons231198

Wittchen,  Andreas
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1905.02765.pdf
(Preprint), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Thorpe, J. I., Slutsky, J., Baker, J., Littenberg, T., Hourihane, S., Pagane, N., et al. (2019). Micrometeoroid Events in LISA Pathfinder. The Astrophysical Journal, 883 (1): 53. doi:10.3847/1538-4357/ab3649.


Cite as: https://hdl.handle.net/21.11116/0000-0004-CD38-7
Abstract
The zodiacal dust complex, a population of dust and small particles that
pervades the Solar System, provides important insight into the formation and
dynamics of planets, comets, asteroids, and other bodies. Here we present a new
set of data obtained using a novel technique: direct measurements of momentum
transfer to a spacecraft from individual particle impacts. This technique is
made possible by the extreme precision of the instruments flown on the LISA
Pathfinder spacecraft, a technology demonstrator for a future space-based
gravitational wave observatory that operated near the first Sun-Earth Lagrange
point from early 2016 through Summer of 2017. Using a simple model of the
impacts and knowledge of the control system, we show that it is possible to
detect impacts and measure properties such as the transferred momentum (related
to the particle's mass and velocity), direction of travel, and location of
impact on the spacecraft. In this paper, we present the results of a systematic
search for impacts during 4348 hours of Pathfinder data. We report a total of
54 candidates with momenta ranging from 0.2$\,\mu\textrm{Ns}$ to
230$\,\mu\textrm{Ns}$. We furthermore make a comparison of these candidates
with models of micrometeoroid populations in the inner solar system including
those resulting from Jupiter-family comets, Oort-cloud comets, Hailey-type
comets, and Asteroids. We find that our measured population is consistent with
a population dominated by Jupiter-family comets with some evidence for a
smaller contribution from Hailey-type comets. This is in agreement with
consensus models of the zodiacal dust complex in the momentum range sampled by
LISA Pathfinder.