English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Whistling shares a common tongue with speech: Bioacoustics from real-time MRI of the human vocal tract

MPS-Authors
/persons/resource/persons19791

Kotz,  Sonja A.
Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands;
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Belyk, M., Schultz, B. G., Correia, J., Beal, D. S., & Kotz, S. A. (2019). Whistling shares a common tongue with speech: Bioacoustics from real-time MRI of the human vocal tract. Proceedings of the Royal Society B: Biological Sciences, 286(1911): 20191116. doi:10.1098/rspb.2019.1116.


Cite as: http://hdl.handle.net/21.11116/0000-0004-D3C9-B
Abstract
Most human communication is carried by modulations of the voice. However, a wide range of cultures has developed alternative forms of communication that make use of a whistled sound source. For example, whistling is used as a highly salient signal for capturing attention, and can have iconic cultural meanings such as the catcall, enact a formal code as in boatswain's calls or stand as a proxy for speech in whistled languages. We used real-time magnetic resonance imaging to examine the muscular control of whistling to describe a strong association between the shape of the tongue and the whistled frequency. This bioacoustic profile parallels the use of the tongue in vowel production. This is consistent with the role of whistled languages as proxies for spoken languages, in which one of the acoustical features of speech sounds is substituted with a frequency-modulated whistle. Furthermore, previous evidence that non-human apes may be capable of learning to whistle from humans suggests that these animals may have similar sensorimotor abilities to those that are used to support speech in humans.