English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Distinguishing Majorana zero modes from impurity states through time-resolved transport

MPS-Authors
/persons/resource/persons222861

Tuovinen,  R.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons182604

Sentef,  M. A.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Tuovinen_2019_New_J._Phys._21_103038.pdf
(Publisher version), 1017KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Tuovinen, R., Perfetto, E., van Leeuwen, R., Stefanucci, G., & Sentef, M. A. (2019). Distinguishing Majorana zero modes from impurity states through time-resolved transport. New Journal of Physics, 21: 103038. doi:10.1088/1367-2630/ab4ab7.


Cite as: https://hdl.handle.net/21.11116/0000-0004-DAE2-7
Abstract
We study time-resolved charge transport in a superconducting nanowire using time-dependent Landauer–Büttiker theory. We find that the steady-state Majorana zero-bias conductance peak emerges transiently accompanied by characteristic oscillations after a bias-voltage quench. These oscillations are suppressed for trivial impurity states (IS) that otherwise show a similar steady-state signal as the Majorana zero mode (MZM). In addition, we find that Andreev bound states or quasi-Majorana states (QMS) in the topologically trivial bulk phase can give rise to a zero-bias conductance peak, also retaining the transient properties of the MZM. Our results imply that (1) time-resolved transport may be used as a probe to distinguish between the topological MZM and trivial IS; and (2) the QMS mimic the transient signatures of the topological MZMs.