English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Superconductivity in Weyl Semimetal NbP: Bulk vs. Surface

MPS-Authors
/persons/resource/persons126528

Baenitz,  M.
Michael Baenitz, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126835

Schmidt,  M.
Marcus Schmidt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons192597

Suess,  V.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126739

Lüders,  K.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Baenitz, M., Schmidt, M., Suess, V., Felser, C., & Lüders, K. (2019). Superconductivity in Weyl Semimetal NbP: Bulk vs. Surface. Journal of Physics: Conference Series, 012002, pp. 1-6. doi:10.1088/1742-6596/1293/1/012002.


Cite as: http://hdl.handle.net/21.11116/0000-0004-DBFC-A
Abstract
Transition metal monopnictides belong to the new class of semimetals where the bulk properties are determined by the presence of pairs of nodes with different chirality formed by linear dispersive states in the k-space. Beside the anomaly in the bulk magnetotransport superconductivity is frequently found in some Weyl semimetals. We found signatures of superconductivity in ac and dc magnetization measurements of highly pure and stoichiometric NbP powder. We determined the lower and upper critical field and the Ginzburg-Landau parameter. The relative small superconducting volume fraction is related to either effect of finite grain size and/or surface superconductivity. The last mentioned may originate from either off stoichiometric (Nb-rich) surface layers or a strained surface with different electronic properties. Furthermore the intrinsic normal state susceptibility is determined taking into account a paramagnetic contribution of a few ppm of magnetic impurities.