English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ab initio study of a 2D h-BAs monolayer: a promising anode material for alkali-metal ion batteries

MPS-Authors
/persons/resource/persons145702

Ainane,  Abdelmajid
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Khossossi, N., Banerjee, A., Benhouria, Y., Essaoudi, I., Ainane, A., & Ahuja, R. (2019). Ab initio study of a 2D h-BAs monolayer: a promising anode material for alkali-metal ion batteries. Physical Chemistry Chemical Physics, 21(33), 18328-18337. doi:10.1039/c9cp03242h.


Cite as: https://hdl.handle.net/21.11116/0000-0004-E9AA-6
Abstract
The selection of a suitable two dimensional anode material is one of the key steps in the development of alkali metal ion batteries to achieve superior performance with an ultrahigh rate of charging/discharging capability. Here, we have used state of the art density functional theory (DFT) to explore the feasibility of two dimensional (2D) honeycomb boron arsenide (h-BAs) as a potential anode for alkali-metal (Li/Na/K)-ion batteries. The structural and dynamic stability has been confirmed from the formation energy and the non-negative phonon frequency. The h-BAs monolayer exhibits negative adsorption-energy values of -0.422, -0.321 and -0.814 eV, for the Li, Na, and K-ions, respectively. Subsequently, during the charging process the adsorption-energy increases considerably without an energy-barrier when any of the A-atoms achieve a crucial distance (similar to 8 angstrom). In addition, it has been observed that insertion of the mono alkali metal atom into the h-BAs surface results in the semi-conducting nature of the monolayer being transformed into a metallic-state. The low energy barriers for Li (0.522 eV), Na (0.248), and K (0.204 eV) active ion migration imply high diffusion over the h-BAs surface, hence suggesting it has a high charge/discharge capability. Moreover, we have obtained low average operating voltages of 0.49 V (Li), 0.35 V (Na) and 0.26 V (K) and high theoretical capacities of 522.08 mA h g(-1) (for Li and Na) and 209.46 mA h g(-1) (for K) in this study. The aforementioned findings indicate that a h-BAs monolayer could be a promising anode material in the search for low cost and high performance alkali metal ion batteries.