Abstract
Low-coordinate iron(0) species are implicated as intermediates in a range of iron-catalyzed organic transformations. Isolable iron(0) complexes with coordination numbers of less than four, however, are rarely known. In continuing with our interests in three-coordinate iron(0) complexes with N-heterocyclic carbene (NHC) and alkene ligation, we report herein the synthesis and ligand substitution reactivity of three-coordinate iron(0) complexes featuring monodentate alkene ligands, [(NHC)Fe(η2-vtms)2] (vtms = vinyltrimethylsilane, NHC = 1,3-bis(2′,6′-diisopropylphenyl)-imidazol-2-ylidene (IPr), 1; 1,3-bis(2′,6′-diisopropylphenyl)-4,5-tetramethylene-imidazol-2-ylidene (cyIPr), 2; 1,3-bis(2′,6′-diisopropylphenyl)-4,5,6,7-tetrahydro-1,3-diazepin-2-ylidene (7-IPr), 3). Complexes 1–3 were synthesized from the one-pot reactions of ferrous dihalides with the N-(2,6-diisopropylphenyl)-substituted NHC ligands, vtms, and KC8. Reactivity study of 1 revealed its facile ligand substitution reactions with terminal aryl alkynes, ketones, isocyanides, and CO, by which iron(0) complexes [(IPr)Fe(η2-HCCAr)] (Ar = Ph, 5; p-CH3C6H4, 6; 3,5-(CF3)2C6H3, 7), [(IPr)Fe(η2-OCPh2)2] (8), [(IPr)Fe(CNR)4] (R = 2,6-Me2C6H3, 9; But, 10), and (IPr)Fe(CO)4 (11) were prepared in good yields. These iron(0) complexes have been characterized by 1H NMR, solution magnetic susceptibility measurement, single-crystal X-ray diffraction study, 57Fe Mössbauer spectroscopy, and elemental analysis. Characterization data and computational studies suggest S = 1 ground-spin states for three-coordinate iron(0) complexes 1–3 and 5–8 and S = 0 ground states for 9–11. Theoretical studies on the three-coordinate complexes 1, 6, and 8 indicated pronounced metal-to-ligand backdonation from occupied Fe 3d orbitals to the π* orbitals of the C═C, C≡C, and C═O moieties of the π ligands. In addition, 1 proved an effective precatalyst for the cyclotrimerization reaction of alkynes.