Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

The (3×3)-SiC-(¯1¯1¯1) Reconstruction: Atomic Structure of the Graphene Precursor Surface from a Large-Scale First-Principles Structure Search

MPG-Autoren
/persons/resource/persons135031

Kloppenburg,  Jan
Theory, Fritz Haber Institute, Max Planck Society;
Department of Mechanical Engineering and Material Science, Duke University;

/persons/resource/persons21910

Nemec,  Lydia
Theory, Fritz Haber Institute, Max Planck Society;
Chair for Theoretical Chemistry, Technische Universität München;

/persons/resource/persons22064

Scheffler,  Matthias
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1910.09608.pdf
(Preprint), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kloppenburg, J., Nemec, L., Lange, B., Scheffler, M., & Blum, V. (in preparation). The (3×3)-SiC-(¯1¯1¯1) Reconstruction: Atomic Structure of the Graphene Precursor Surface from a Large-Scale First-Principles Structure Search.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-EEAF-C
Zusammenfassung
Silicon carbide (SiC) is an excellent substrate for growth and manipulation
of large scale, high quality epitaxial graphene. On the carbon face (the
($\bar{1}\bar{1}\bar{1}$) or $(000\bar{1}$) face, depending on the polytype),
the onset of graphene growth is intertwined with the formation of several
competing surface phases, among them a (3$\times$3) precursor phase suspected
to hinder the onset of controlled, near-equilibrium growth of graphene. Despite
more than two decades of research, the precise atomic structure of this phase
is still unclear. We present a new model of the
(3$\times$3)-SiC-($\bar{1}\bar{1}\bar{1}$) reconstruction, derived from an {\it
ab initio} random structure search based on density functional theory including
van der Waals effects. The structure consists of a simple pattern of five Si
adatoms in bridging and on-top positions on an underlying, C-terminated
substrate layer, leaving one C atom per (3$\times$3) unit cell formally
unsaturated. Simulated scanning tunneling microscopy (STM) images are in
excellent agreement with previously reported experimental STM images.