English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The balanced tensor product of module categories

MPS-Authors
/persons/resource/persons236160

Schommer-Pries,  Christopher
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
Fulltext (public)

arXiv:1406.4204.pdf
(Preprint), 447KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Douglas, C. L., Schommer-Pries, C., & Snyder, N. (2019). The balanced tensor product of module categories. Kyoto Journal of Mathematics, 59(1), 167-179. doi:10.1215/21562261-2018-0006.


Cite as: http://hdl.handle.net/21.11116/0000-0004-F05A-8
Abstract
The balanced tensor product M (x)_A N of two modules over an algebra A is the vector space corepresenting A-balanced bilinear maps out of the product M x N. The balanced tensor product M [x]_C N of two module categories over a monoidal linear category C is the linear category corepresenting C-balanced right-exact bilinear functors out of the product category M x N. We show that the balanced tensor product can be realized as a category of bimodule objects in C, provided the monoidal linear category is finite and rigid.