Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

f-mode strengthening from a localised bipolar subsurface magnetic field

MPG-Autoren
/persons/resource/persons206403

Singh,  Nishant K.
Max Planck Research Group and ERC Consolidator Grant: Solar and Stellar Dynamos - SOLSTAR, Max Planck Institute for Solar System Research, Max Planck Society;

Raichur,  Harsha
Max Planck Research Group and ERC Consolidator Grant: Solar and Stellar Dynamos - SOLSTAR, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons201681

Käpylä,  Maarit J.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Singh, N. K., Raichur, H., Käpylä, M. J., Rheinhardt, M., Brandenburg, A., & Käpylä, P. J. (2020). f-mode strengthening from a localised bipolar subsurface magnetic field. Geophysical and Astrophysical Fluid Dynamics, 114(1-2), 196-212. doi:10.1080/03091929.2019.1653461.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-EE4D-A
Zusammenfassung
Recent numerical work in helioseismology has shown that a periodically varying subsurface magnetic field leads to a fanning of the f-mode, which emerges from a density jump at the surface. In an attempt to model a more realistic situation, we now modulate this periodic variation with an envelope, giving thus more emphasis on localised bipolar magnetic structures in the middle of the domain. Some notable findings are: (i) compared to the purely hydrodynamic case, the strength of the f-mode is significantly larger at high horizontal wavenumbers k, but the fanning is weaker for the localised subsurface magnetic field concentrations investigated here than the periodic ones studied earlier; (ii) when the strength of the magnetic field is enhanced at a fixed depth below the surface, the fanning of the f-mode in the kω diagram increases proportionally in such a way that the normalised f-mode strengths remain nearly the same in different such cases; (iii) the unstable Bloch modes reported previously in case of harmonically varying magnetic fields are now completely absent when more realistic localised magnetic field concentrations are imposed beneath the surface, thus suggesting that the Bloch modes are unlikely to be supported during most phases of the solar cycle; (iv) the f-mode strength appears to depend also on the depth of magnetic field concentrations such that it shows a relative decrement when the maximum of the magnetic field is moved to a deeper layer. We argue that detections of f-mode perturbations such as those being explored here could be effective tracers of solar magnetic fields below the photosphere before these are directly detectable as visible manifestations in terms of active regions or sunspots.