English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Pronounced morphological changes in a southern active zone on comet 67P/Churyumov-Gerasimenko

MPS-Authors
/persons/resource/persons104212

Sierks,  Holger
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons160269

Güttler,  Carsten
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons140545

Deller,  Jakob
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons192389

Shi,  Xian
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104259

Tubiana,  Cecilia
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hasselmann, P. H., Barucci, M. A., Fornasier, S., Bockelée-Morvan, D., Deshapriya, J. D. P., Feller, C., et al. (2019). Pronounced morphological changes in a southern active zone on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 630: A8. doi:10.1051/0004-6361/201833940.


Cite as: https://hdl.handle.net/21.11116/0000-0005-0A59-D
Abstract
A smooth deposit in the southern Khonsu region has been seen in ESA/Rosetta observations as active during the second half of 2015, when the southern summer coincided with the perihelion passage of 67P/Churyumov-Gerasimenko (67P). Image color sequences acquired by the OSIRIS instrument in the period of January 2015 to July 2016, pre- and post-perihelion, show the occurrence of several small transient events as well as three massive outbursts (~10 to 1500 tons). High spatial resolution images taken one year and a half apart allowed us to track a variety of sources: the formation of cavities that are 1.3–14 m deep, ice-enriched patches, scarp retraction, and a second 50 m-wide boulder. We then estimated their masses and the dust mass of their corresponding plumes and outbursts. In particular, the deformation left by that boulder and its lack of talus may provide evidence for the lifting and subsequent falling back to the surface of large blocks. We calculate that a minimum vapor production rate of 1.4 × 1024 m-2 s-1 is required to lift such an object. The comparison of the masses that are lost in the new cavities to the dust mass of outbursts gives indirect evidence of highly volatile ice pockets underneath. The spectrophotometric analysis and boulder counting also provides evidence for cavities that formed only 30 m apart with different spectral slopes, two long-standing ice patches, and local variations in the boulder-size frequency distribution. All this points to sub-surface ice pockets with different degrees of depth. Finally, the total mass of the morphological changes compared to most recent calculations of the total released mass by activity on 67P is estimated to be between 1.5 and 4.2%. This means that as many as about 25 similar active zones across the nucleus would be enough to sustain the entire cometary activity.