Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Phase-curve analysis of comet 67P/Churyumov-Gerasimenko at small phase angles

MPG-Autoren
/persons/resource/persons104074

Masoumzadeh,  Nafiseh
IMPRS on Physical Processes in the Solar System and Beyond, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104259

Tubiana,  Cecilia
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons160269

Güttler,  Carsten
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104212

Sierks,  Holger
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons140545

Deller,  Jakob
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons192389

Shi,  Xian
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen

Astrophysics Data System (ADS)
(Zusammenfassung)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Masoumzadeh, N., Kolokolova, L., Tubiana, C., El-Maarry, M. R., Mottola, S., Güttler, C., et al. (2019). Phase-curve analysis of comet 67P/Churyumov-Gerasimenko at small phase angles. Astronomy and Astrophysics, 630: A11. doi:10.1051/0004-6361/201834845.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-0A89-6
Zusammenfassung
Aims. The Rosetta-OSIRIS images acquired at small phase angles in three wavelengths during the fly-by of the spacecraft on 9–10 April 2016 provided a unique opportunity to study the opposition effect on the surface of comet 67P/Churyumov-Gerasimenko (67P). Our goal is to study phase curves of the nucleus at small phase angles for a variety of surface structures to show the differences in their opposition effect and to determine which surface properties cause the differences.

Methods. We used OSIRIS NAC images that cover the Ash-Khepry-Imhotep region to extract the phase curve, that is, the reflectance of the surface as a function of phase angle. We selected six regions of interest (ROIs) and derived the phase curves for each ROI. We fit a linear-exponential function to the phase curves. The resulting model parameters were then interpreted by spectrophotometric, geomorphological, and phase-ratio analyses, and by investigating the influence of structural and textural properties of the surface.

Results. We find evidence for the opposition effect (deviation of the phase curve from linear behavior) in phase curves for all areas. We found an anticorrelation between the phase ratio and reflectance in a small phase angle range. This provides evidence for the shadow-hiding effect. We conclude that the decrease in the slope of the phase ratio versus reflectance indicates a decrease in the proportion of shadowed regions and reduces the contribution of the shadow-hiding effect. Large uncertainties in the determination of the opposition effect parameters with respect to wavelength do not allow us to conclusively claim coherent backscattering in the opposition effect phenomenon. Based on the two analyses, we conclude that the opposition effect of comet 67P in the Ash-Khepry-Imhotep region is mainly affected by shadow-hiding.