English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Lattice structures and phase behavior of amphiphilic monoglycerol monolayers

MPS-Authors
/persons/resource/persons121976

Vollhardt,  Dieter
Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121172

Brezesinski,  Gerald
Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Vollhardt, D., & Brezesinski, G. (2019). Lattice structures and phase behavior of amphiphilic monoglycerol monolayers. Advances in Colloid and Interface Science, 273: 102030. doi:10.1016/j.cis.2019.102030.


Cite as: https://hdl.handle.net/21.11116/0000-0005-6FB1-7
Abstract
Due to the Angstrom resolution, Grazing incidence X-ray diffraction (GIXD) represents the most important technique for probing the lateral ordering in condensed monolayers at the air/water interface and allows the construction of phase diagrams of amphiphilic monolayers on the basis of two-dimensional lattice structures and tilt directions of the molecules. The high potential of GIXD is demonstrated by the structural characterization of a variety of amphiphilic monoalkanoylglycerol monolayers in Å-scale. The GIXD results have impressively shown that in the racemic 1-monostearoylglycerol monolayer with the appearance of an oblique intermediate phase (Obl) between the nearest neighbor (NN)- and next-nearest neighbor (NNN)-tilted orthorhombic phases symmetry breaking occurs at low temperatures. The generic lateral pressure−temperature phase diagram of racemic monoacylglycerol monolayers constructed on the basis of reliable two-dimensional lattice structures indicates that the new and surprising presence of the oblique phase depends only on the temperature. The significant effect of the substituted polar groups, chemical structure variations at the position of the glycerol backbone and chirality on the lattice structure in Å-scale was highlighted in a systematic overview on the structure and phase behavior of amphiphilic monoglycerol monolayers. The conspicuous effect of the position of the glycerol backbone at which the polar group is substituted is demonstrated. The monolayers of 2-monopalmitoyl-rac-glycerol behave as that of 1-monomyristoyl-rac-glycerol having a two CH2 groups shorter alkyl chain. Further main topics discussed are chiral discrimination and crossover between homo- and heterochiral discrimination supported by quantum chemical calculations.