English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Selective Late‐Stage Sulfonyl Chloride Formation from Sulfonamides Enabled by Pyry‐BF4

MPS-Authors
/persons/resource/persons242658

Gómez‐Palomino,  Alejandro
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons207433

Cornella,  Josep
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gómez‐Palomino, A., & Cornella, J. (2019). Selective Late‐Stage Sulfonyl Chloride Formation from Sulfonamides Enabled by Pyry‐BF4. Angewandte Chemie, International Edition, 58(50), 18235-18239. doi:10.1002/anie.201910895.


Cite as: https://hdl.handle.net/21.11116/0000-0005-4C3B-5
Abstract
Reported here is a simple and practical functionalization of primary sulfonamides, by means of a pyrylium salt (Pyry‐BF4), with nucleophiles. This simple reagent activates the poorly nucleophilic NH2 group in a sulfonamide, enabling the formation of one of the best electrophiles in organic synthesis: a sulfonyl chloride. Because of the variety of primary sulfonamides in pharmaceutical contexts, special attention has been focused on the direct conversion of densely functionalized primary sulfonamides by a late‐stage formation of the corresponding sulfonyl chloride. A variety of nucleophiles could be engaged in this transformation, thus permitting the synthesis of complex sulfonamides, sulfonates, sulfides, sulfonyl fluorides, and sulfonic acids. The mild reaction conditions and the high selectivity of Pyry‐BF4 towards NH2 groups permit the formation of sulfonyl chlorides in a late‐stage fashion, tolerating a preponderance of sensitive functionalities.