English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ca–Ag compounds in ethylene epoxidation reaction

MPS-Authors
/persons/resource/persons126519

Antonyshyn,  Iryna
Iryna Antonyshyn, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126852

Sichevych,  Olga
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126787

Ormeci,  Alim
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126556

Burkhardt,  Ulrich
Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons39185

Rasim,  Karsten
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126626

Grin,  Yuri
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Antonyshyn, I., Sichevych, O., Ormeci, A., Burkhardt, U., Rasim, K., Titlbach, S., et al. (2019). Ca–Ag compounds in ethylene epoxidation reaction. Science and Technology of Advanced Materials, 20(1), 902-916. doi:10.1080/14686996.2019.1655664.


Cite as: https://hdl.handle.net/21.11116/0000-0005-1BDC-6
Abstract
The ethylene epoxidation is a challenging catalytic process, and development of active and selective catalyst requires profound understanding of its chemical behaviour under reaction conditions. The systematic study on intermetallic compounds in the Ca–Ag system under ethylene epoxidation conditions clearly shows that the character of the oxidation processes on the surface originates from the atomic interactions in the pristine compound. The Ag-rich compounds Ca2Ag7 and CaAg2 undergo oxidation towards fcc Ag and a complex Ca-based support, whereas equiatomic CaAg and the Ca-rich compounds Ca5Ag3 and Ca3Ag in bulk remain stable under harsh ethylene epoxidation conditions. For the latter presence of water vapour in the gas stream leads to noticeable corrosion. Combining the experimental results with the chemical bonding analysis and first-principles calculations, the relationships among the chemical nature of the compounds, their reactivity and catalytic performance towards epoxidation of ethylene are investigated. © 2019, © 2019 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.