English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The structural isomerisation of human-muscle adenylate kinase as studied by 1H-nuclear magnetic resonance

MPS-Authors
/persons/resource/persons93660

Kalbitzer,  Hans Robert
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons231976

Marquetant-Strasser,  Rainer
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95056

Rösch,  Paul
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons205497

Schirmer,  R. Heiner
Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kalbitzer, H. R., Marquetant-Strasser, R., Rösch, P., & Schirmer, R. H. (1982). The structural isomerisation of human-muscle adenylate kinase as studied by 1H-nuclear magnetic resonance. European Journal of Biochemistry, 126(3), 531-536. doi:10.1111/j.1432-1033.1982.tb06813.x.


Cite as: https://hdl.handle.net/21.11116/0000-0005-1D43-0
Abstract
Human muscle adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3.) was studied by 1H-nuclear magnetic resonance spectroscopy. The C-2 and C-4 proton resonances of the active-center histidine His-36 could be identified; the pK of His-36 was determined as 6.1. The pK of His-189 is very low (4.9) although it is located at the surface of the protein. Other resonance lines are discussed in comparison with NMR spectra of porcine adenylate kinase [McDonald et al. (1975) J. Biol. Chem. 250, 6947-6954]. A pH-dependent structural isomerization as shown by X-ray crystallography in the pig enzyme [Pai et al. (1977) J. Mol. Biol. 114, 37-45] was not observed for human adenylate kinase in solution. However, the binding of adenosine(5')pentaphospho(5')adenosine (Ap5A), a bisubstrate inhibitor, to adenylate kinase causes an overall change of the NMR spectrum indicative of a large conformational change of the enzyme. The exchange rate (koff) for Ap5A was estimated as 10 s-1 and decreases by addition of Mg2+. On the basis of these values and the known dissociation constant it is likely that the binding of Ap5A is a diffusion-controlled process kon being 10(8) M-1 s-1. In conclusion, the system Ap5A/Mg2+/human adenylate kinase, which has been studied by NMR spectroscopy and X-ray diffraction in parallel, is suitable for analyzing the induced fit postulated by Jencks for all kinase-catalyzed reactions.