English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Variety Membership Testing, Algebraic Natural Proofs, and Geometric Complexity Theory

MPS-Authors
/persons/resource/persons185335

Pandey,  Anurag
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

arXiv:1911.02534.pdf
(Preprint), 613KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bläser, M., Ikenmeyer, C., Lysikov, V., Pandey, A., & Schreyer, F.-O. (2019). Variety Membership Testing, Algebraic Natural Proofs, and Geometric Complexity Theory. Retrieved from http://arxiv.org/abs/1911.02534.


Cite as: http://hdl.handle.net/21.11116/0000-0005-1D77-6
Abstract
We study the variety membership testing problem in the case when the variety is given as an orbit closure and the ambient space is the set of all 3-tensors. The first variety that we consider is the slice rank variety, which consists of all 3-tensors of slice rank at most $r$. We show that the membership testing problem for the slice rank variety is $\NP$-hard. While the slice rank variety is a union of orbit closures, we define another variety, the minrank variety, expressible as a single orbit closure. Our next result is the $\NP$-hardness of membership testing in the minrank variety, hence we establish the $\NP$-hardness of the orbit closure containment problem for 3-tensors. Algebraic natural proofs were recently introduced by Forbes, Shpilka and Volk and independently by Grochow, Kumar, Saks and Saraf. Bl\"aser et al. gave a version of an algebraic natural proof barrier for the matrix completion problem which relies on $\coNP \subseteq \exists \BPP$. It implied that constructing equations for the corresponding variety should be hard. We generalize their approach to work with any family of varieties for which the membership problem is $\NP$-hard and for which we can efficiently generate a dense subset. Therefore, a similar barrier holds for the slice rank and the minrank varieties, too. This allows us to set up the slice rank and the minrank varieties as a test-bed for geometric complexity theory (GCT). We determine the stabilizers of the tensors that generate the orbit closures of the two varieties and prove that these tensors are almost characterized by their symmetries. We prove several nontrivial equations for both the varieties using different GCT methods. Many equations also work in the regime where membership testing in the slice rank or minrank varieties is $\NP$-hard. We view this as a promising sign that the GCT approach might indeed be successful.