English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Series of Iron Nitrosyl Complexes {Fe–NO}6–9 and a Fleeting {Fe–NO}10 Intermediate en Route to a Metalacyclic Iron Nitrosoalkane

MPS-Authors
/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216845

Ye,  Shengfa
Research Group Ye, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Keilwerth, M., Hohenberger, J., Heinemann, F. W., Sutter, J., Scheurer, A., Fang, H., et al. (2019). A Series of Iron Nitrosyl Complexes {Fe–NO}6–9 and a Fleeting {Fe–NO}10 Intermediate en Route to a Metalacyclic Iron Nitrosoalkane. Journal of the American Chemical Society, 141(43), 17217-17235. doi:10.1021/jacs.9b08053.


Cite as: http://hdl.handle.net/21.11116/0000-0005-4263-1
Abstract
Iron–nitrosyls have fascinated chemists for a long time due to the noninnocent nature of the NO ligand that can exist in up to five different oxidation and spin states. Coordination to an open-shell iron center leads to complex electronic structures, which is the reason Enemark−Feltham introduced the {Fe–NO}n notation. In this work, we succeeded in characterizing a series of {Fe–NO}6–9 complexes, including a reactive {Fe–NO}10 intermediate. All complexes were synthesized with the tris-N-heterocyclic carbene ligand tris[2-(3-mesitylimidazol-2-ylidene)ethyl]amine (TIMENMes), which is known to support iron in high and low oxidation states. Reaction of NOBF4 with [(TIMENMes)Fe]2+ resulted in formation of the {Fe–NO}6 compound [(TIMENMes)Fe(NO)(CH3CN)](BF4)3 (1). Stepwise chemical reduction with Zn, Mg, and Na/Hg leads to the isostructural series of high-spin iron nitrosyl complexes {Fe–NO}7,8,9 (2–4). Reduction of {Fe–NO}9 with Cs electride finally yields the highly reduced {Fe–NO}10 intermediate, key to formation of [Cs(crypt-222)][(TIMENMes)Fe(NO)], (5) featuring a metalacyclic [Fe−(NO−NHC)3−] nitrosoalkane unit. All complexes were characterized by single-crystal XRD analyses, temperature and field-dependent SQUID magnetization methods, as well as 57Fe Mössbauer, IR, UV/vis, multinuclear NMR, and dual-mode EPR spectroscopy. Spectroscopy-based DFT analyses provide insight into the electronic structures of all compounds and allowed assignments of oxidation states to iron and NO ligands. An alternative synthesis to the {Fe–NO}8 complex was found via oxygenation of the nitride complex [(TIMENMes)Fe(N)](BF4). Surprisingly, the resulting {Fe–NO}8 species is electronically and structural similar to the [(TIMENMes)Fe(N)]+ precursor. Based on the structural and electronic similarities between this nitrosyl/nitride complex couple, we adopted the strategy, developed by Wieghardt et al., of extending the Enemark−Feltham nomenclature to nitrido complexes, rendering [(TIMENMes)Fe(N)]+ as a {Fe–N}8 species.