Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

On-the-fly particle metrology in hollow-core photonic crystal fibre

MPG-Autoren

Sharma,  Abhinav
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201238

Xie,  Shangran
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201242

Zeltner,  Richard
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  Philip
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;
Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sharma, A., Xie, S., Zeltner, R., & Russell, P. (2019). On-the-fly particle metrology in hollow-core photonic crystal fibre. Optics Express, 27(24), 34496-34504.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-4478-8
Zusammenfassung
Efficient monitoring of airborne particulate matter (PM), especially particles with aerodynamic diameter less than 2.5 µm (PM2.5), is crucial for improving public health. Reliable information on the concentration, size distribution and chemical characteristics of PMs is key to evaluating air pollution and identifying its sources. Standard methods for PM2.5 characterization require sample collection from the atmosphere and post-analysis using sophisticated equipment in a laboratory environment, and are normally very time-consuming. Although optical methods based on analysis of scattering of free-space laser beams or evanescent fields are in principle suitable for real-time particle counting and sizing, lack of knowledge of the refractive index in these methods not only leads to inevitable sizing ambiguity but also prevents identification of the particle material. In the case of evanescent wave detection, the system lifetime is strongly limited by adhesion of particles to the surfaces. Here we report a novel technique for airborne particle metrology based on hollow-core photonic crystal fibre. It offers in situ particle counting, sizing and refractive index measurement with effectively unlimited device lifetime, and relies on optical forces that automatically capture airborne particles in front of the hollow core and propel them into the fibre. The resulting transmission drop, together with the time-of-flight of the particles passing through the fibre, provide unambiguous mapping of particle size and refractive index with high accuracy. The technique offers unique advantages over currently available real-time particle metrology systems, and can be directly applied to monitoring air pollution in the open atmosphere as well as precise particle characterization in a local environment such as a closed room or a reaction vessel.