日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Quantum equilibration of the double-proton transfer in a model system porphine

MPS-Authors
/persons/resource/persons226200

Albareda Piquer,  G.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center forFree-Electron Laser Science;
Institute of Theoretical and Computational Chemistry, Universitat de Barcelona;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

d0cp02991b.pdf
(出版社版), 6MB

付随資料 (公開)

suppl.zip
(付録資料), 11MB

引用

Albareda Piquer, G., Riera, A., Gonzalez, M., Bofill, J. M., de Moreira, I. P. R., Valero, R., & Tavernelli, I. (2020). Quantum equilibration of the double-proton transfer in a model system porphine. Physical Chemistry Chemical Physics, 22(39), 22332-22341. doi:10.1039/D0CP02991B.


引用: https://hdl.handle.net/21.11116/0000-0005-464D-7
要旨
There is a renewed interest in the derivation of statistical mechanics from the dynamics of closed quantum systems. A central part of this program is to understand how closed quantum systems, i.e., in the absence of a thermal bath, initialized far-from-equilibrium can share a dynamics that is typical to the relaxation towards thermal equilibrium. Equilibration dynamics has been traditionally studied with a focus on the so-called quenches of large-scale many-body systems. We consider here the equilibration of a two-dimensional molecular model system describing the double proton transfer reaction in porphine. Using numerical simulations, we show that equilibration indeed takes place very rapidly (∼200 fs) for initial states induced by pump–dump laser pulse control with energies well above the synchronous barrier. The resulting equilibration state is characterized by a strong delocalization of the probability density of the protons that can be explained, mechanistically, as the result of (i) an initial state consisting of a large superposition of vibrational states, and (ii) the presence of a very effective dephasing mechanism.