English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Crohn’s disease-associated Escherichia coli strain LF82 relies on SOS and stringent responses to survive, multiply and tolerate antibiotics within macrophages

MPS-Authors
/persons/resource/persons200286

Schenk,  Hanna
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons221504

De Monte,  Silvia
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;
Research Group Dynamics of Microbial Collectives, Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

journal.ppat.1008123.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Demarre, G., Prudent, V., Schenk, H., Rousseau, E., Bringer, M.-A., Barnich, N., et al. (2019). The Crohn’s disease-associated Escherichia coli strain LF82 relies on SOS and stringent responses to survive, multiply and tolerate antibiotics within macrophages. PLoS Pathogens, 15(11): e1008123. doi:10.1371/journal.ppat.1008123.


Cite as: https://hdl.handle.net/21.11116/0000-0005-494B-6
Abstract
Author summary Intestinal microbiome dysbiosis has been consistently described in patients with Crohn’s disease. The adherent-invasive E. coli (AIEC) pathotype in particular, has been implicated in the pathogenesis. AIEC colonize intestinal epithelial cells and survive and replicate within macrophages. Here we demonstrated that growth of AIEC LF82 inside the toxic mature phagolysosomes of macrophages requires sequential adaptations and phenotype switches. First, the stringent response halts the replicative cell cycle of AIEC LF82 for few hours. During this period a large number of AIEC LF82 acquires the ability to tolerate antibiotic treatments. Later when, AIEC multiplication restarts it requires DNA repair suggesting that AIEC have accumulated lesions during the first hours post infection. We observed that non growing bacteria appear frequently from the population of growing AIEC LF82 in this second phase. This raises the proportion of antibiotic tolerant AIEC LF82 up to 10% of the population. Thus, intracellular challenges induce AIEC LF82 phenotypic heterogeneity and non-growing bacteria that could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections.