English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Proteomic and metabolomic profiling underlines the stage- and time-dependent effects of high temperature on grape berry metabolism

MPS-Authors
/persons/resource/persons97146

Feil,  R.
System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97287

Lunn,  J. E.
System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Ressource

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lecourieux, D., Kappel, C., Claverol, S., Pieri, P., Feil, R., Lunn, J. E., et al. (2020). Proteomic and metabolomic profiling underlines the stage- and time-dependent effects of high temperature on grape berry metabolism. Journal of Integrative Plant Biology, 62(8), 1132-1158. doi:10.1101/810481.


Cite as: http://hdl.handle.net/21.11116/0000-0005-497B-0
Abstract
Climate change scenarios predict an increase in mean air temperatures and in the frequency, intensity, and length of extreme temperature events in many wine-growing regions worldwide. Because elevated temperature has detrimental effects on the berry growth and composition, it threatens the economic and environmental sustainability of wine production. Using Cabernet Sauvignon fruit-bearing cuttings, we investigated the effects of high temperature (HT) on grapevine berries through a label-free shotgun proteomic analysis coupled to a complementary metabolomic study. Among the 2279 proteins identified, 592 differentially abundant proteins were found in berries exposed to HT. The gene ontology categories “}Stress{”}, {“}Protein{”}, {“}Secondary metabolism{”} and {“}Cell wall{” were predominantly altered under HT. High temperatures strongly impaired carbohydrate and energy metabolism, and the effects depended on the stage of development and duration of treatment. Transcript amounts correlated poorly with protein expression levels in HT berries, highlighting the value of proteomic studies in the context of heat stress. Furthermore, this work reveals that HT alters key proteins driving berry development and ripening. Finally, we provide a list of differentially abundant proteins that can be considered as potential markers for developing or selecting grape varieties that are better adapted to warmer climates or extreme heat waves.