Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A new terrestrial biosphere model with coupled carbon, nitrogen, and phosphorus cycles (QUINCY v1.0; revision 1772)

MPG-Autoren

Thum ,  Tea
Max Planck Institute for Biogeochemistry, Max Planck Society;

Caldararu,  Silvia
Max Planck Institute for Biogeochemistry, Max Planck Society;

Engel,  Jan
Max Planck Institute for Biogeochemistry, Max Planck Society;

Kern,  Melanie
Max Planck Institute for Biogeochemistry, Max Planck Society;

Pallandt,  Marleen
Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons37322

Schnur,  Reiner       
Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

Yu,  Lin
Max Planck Institute for Biogeochemistry, Max Planck Society;

Zaehle,  Sönke
Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

gmd-12-4781-2019.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)

gmd-12-4781-2019-supplement.zip
(Ergänzendes Material), 5MB

Zitation

Thum, T., Caldararu, S., Engel, J., Kern, M., Pallandt, M., Schnur, R., et al. (2019). A new terrestrial biosphere model with coupled carbon, nitrogen, and phosphorus cycles (QUINCY v1.0; revision 1772). Geoscientific Model Development, 12, 4781-4802. doi:10.5194/gmd-12-4781-2019.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-4B9A-A
Zusammenfassung
The dynamics of terrestrial ecosystems are shaped by the coupled cycles of carbon, nitrogen and phosphorus, and strongly depend on the availability of water and energy. These interactions shape future terrestrial biosphere responses to global change. Many process-based models of the terrestrial biosphere have been gradually extended from considering carbon-water interactions to also including nitrogen, and later, phosphorus dynamics. This evolutionary model development has hindered full integration of these biogeochemical cycles and the feedbacks amongst them. Here we present a new terrestrial ecosystem model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system), which is formulated around a consistent representation of element cycling in terrestrial ecosystems. This new model includes i) a representation of plant growth which separates source (e.g. photosynthesis) and sink (growth rate of individual tissues, constrained by nutrients, temperature, and water availability) processes; ii) the acclimation of many ecophysiological processes to meteorological conditions and/or nutrient availabilities; iii) an explicit representation of vertical soil processes to separate litter and soil organic matter dynamics; iv) a range of new diagnostics (leaf chlorophyll content; 13C, 14C, and 15N isotope tracers) to allow for a more in-depth model evaluation. We present the model structure and provide an assessment of its performance against a range of observations from global-scale ecosystem monitoring networks. We demonstrate that the framework is capable of consistently simulating ecosystem dynamics across a large gradient in climate and soil conditions, as well as across different plant functional types. To aid this understanding we provide an assessment of the model's sensitivity to its parameterisation and the associated uncertainty.