Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Giant enhancement of the skyrmion stability in a chemically strained helimagnet

MPG-Autoren
/persons/resource/persons205569

Sukhanov,  A. S.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons231670

Vir,  Praveen
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons207368

Nikitin,  S. E.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons225428

Kriegner,  D.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126541

Borrmann,  H.
Horst Borrmann, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126847

Shekhar,  C.
Chandra Shekhar, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sukhanov, A. S., Vir, P., Heinemann, A., Nikitin, S. E., Kriegner, D., Borrmann, H., et al. (2019). Giant enhancement of the skyrmion stability in a chemically strained helimagnet. Physical Review B, 100(18): 180403, pp. 1-5. doi:10.1103/PhysRevB.100.180403.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-4D8C-8
Zusammenfassung
We employed small-angle neutron scattering to demonstrate that the magnetic skyrmion lattice can be realized in bulk chiral magnets as a thermodynamically stable state at temperatures much lower than the ordering temperature of the material. This is in the regime where temperature fluctuations become completely irrelevant to the formation of the topologically nontrivial magnetic texture. In this attempt we focused on the model helimagnet MnSi, in which the skyrmion lattice was previously well characterized and shown to exist only in a very narrow phase pocket close to the Curie temperature of 29.5 K. We revealed that large uniaxial distortions caused by the crystal-lattice strain in MnSi result in stabilization of the skyrmion lattice in magnetic fields applied perpendicular to the uniaxial strain at temperatures as low as 5 K. To study the bulk chiral magnet subjected to a large uniaxial stress, we have utilized micrometer-sized single-crystalline inclusions of MnSi naturally found inside single crystals of the nonmagnetic material Mn11Si19. The reciprocal-space imaging allowed us to unambiguously identify the stabilization of the skyrmion state over the competing conical spin spiral.