English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Giant enhancement of the skyrmion stability in a chemically strained helimagnet

MPS-Authors
/persons/resource/persons205569

Sukhanov,  A. S.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons231670

Vir,  Praveen
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons207368

Nikitin,  S. E.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons225428

Kriegner,  D.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126541

Borrmann,  H.
Horst Borrmann, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126847

Shekhar,  C.
Chandra Shekhar, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sukhanov, A. S., Vir, P., Heinemann, A., Nikitin, S. E., Kriegner, D., Borrmann, H., et al. (2019). Giant enhancement of the skyrmion stability in a chemically strained helimagnet. Physical Review B, 100(18): 180403, pp. 1-5. doi:10.1103/PhysRevB.100.180403.


Cite as: http://hdl.handle.net/21.11116/0000-0005-4D8C-8
Abstract
We employed small-angle neutron scattering to demonstrate that the magnetic skyrmion lattice can be realized in bulk chiral magnets as a thermodynamically stable state at temperatures much lower than the ordering temperature of the material. This is in the regime where temperature fluctuations become completely irrelevant to the formation of the topologically nontrivial magnetic texture. In this attempt we focused on the model helimagnet MnSi, in which the skyrmion lattice was previously well characterized and shown to exist only in a very narrow phase pocket close to the Curie temperature of 29.5 K. We revealed that large uniaxial distortions caused by the crystal-lattice strain in MnSi result in stabilization of the skyrmion lattice in magnetic fields applied perpendicular to the uniaxial strain at temperatures as low as 5 K. To study the bulk chiral magnet subjected to a large uniaxial stress, we have utilized micrometer-sized single-crystalline inclusions of MnSi naturally found inside single crystals of the nonmagnetic material Mn11Si19. The reciprocal-space imaging allowed us to unambiguously identify the stabilization of the skyrmion state over the competing conical spin spiral.