English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo

MPS-Authors
/persons/resource/persons230175

Eklund,  Alexandra S.
Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons197581

Schlichthaerle,  Thomas
Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons197583

Schueder,  Florian
Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons172959

Jungmann,  Ralf
Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

s41598-019-50232-x.pdf
(Any fulltext), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Fazel, M., Wester, M. J., Mazloom-Farsibaf, H., Meddens, M. B. M., Eklund, A. S., Schlichthaerle, T., et al. (2019). Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo. SCIENTIFIC REPORTS, 9: 13791. doi:10.1038/s41598-019-50232-x.


Cite as: https://hdl.handle.net/21.11116/0000-0005-57ED-F
Abstract
In single molecule localization-based super-resolution imaging, high labeling density or the desire for greater data collection speed can lead to clusters of overlapping emitter images in the raw super-resolution image data. We describe a Bayesian inference approach to multiple-emitter fitting that uses Reversible Jump Markov Chain Monte Carlo to identify and localize the emitters in dense regions of data. This formalism can take advantage of any prior information, such as emitter intensity and density. The output is both a posterior probability distribution of emitter locations that includes uncertainty in the number of emitters and the background structure, and a set of coordinates and uncertainties from the most probable model.