English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Rap1 and membrane lipids cooperatively recruit talin to trigger integrin activation

MPS-Authors
/persons/resource/persons221537

Bromberger,  Thomas
Fässler, Reinhard / Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons188959

Klapproth,  Sarah
Fässler, Reinhard / Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78420

Moser,  Markus
Fässler, Reinhard / Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bromberger, T., Zhu, L., Klapproth, S., Qin, J., & Moser, M. (2019). Rap1 and membrane lipids cooperatively recruit talin to trigger integrin activation. JOURNAL OF CELL SCIENCE, 132(21): UNSP jcs235531. doi:10.1242/jcs.235531.


Cite as: https://hdl.handle.net/21.11116/0000-0005-6EB4-5
Abstract
Recruitment and tethering of talin to the plasma membrane initiate the process of integrin activation. Multiple factors including the Rap1 proteins, RIAM (also known as APBB1IP) and PIP2 bind talin proteins and have been proposed to regulate these processes, but not systematically analyzed. By expressing specific talin mutants into talin-null fibroblasts, we show that binding of the talin F0 domain to Rap1 synergizes with membrane lipid binding of the talin F2 domain during talin membrane targeting and integrin activation, whereas the interaction of the talin rod with RIAM was dispensable. We also characterized a second Rap1-binding site within the talin F1 domain by detailed NMR analysis. Interestingly, while talin F1 exhibited significantly weaker Rap1-binding affinity than talin F0, expression of a talin F1 Rap1-binding mutant inhibited cell adhesion, spreading, talin recruitment and integrin activation similarly to the talin F0 Rap1-binding mutant. Moreover, the defects became significantly stronger when both Rap1-binding sites weremutated. In conclusion, our data suggest a model in which cooperative binding of Rap1 to the talin F0 and F1 domains synergizes with membrane PIP2 binding to spatiotemporally position and activate talins to regulate integrin activity.