English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Toward Absolute Molecular Numbers in DNA-PAINT

MPS-Authors
/persons/resource/persons229547

Stein,  Johannes
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons229551

Stehr,  Florian
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons243798

Schueler,  Patrick
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons215565

Blumhardt,  Philipp
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons197583

Schueder,  Florian
Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons138355

Mücksch,  Jonas
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons172959

Jungmann,  Ralf
Jungmann, Ralf / Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons15815

Schwille,  Petra
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

acs.nanolett.9b03546.pdf
(Publisher version), 3MB

Supplementary Material (public)

nl9b03546_si_001.pdf
(Supplementary material), 3MB

Citation

Stein, J., Stehr, F., Schueler, P., Blumhardt, P., Schueder, F., Mücksch, J., et al. (2019). Toward Absolute Molecular Numbers in DNA-PAINT. Nano Letters, 19(11), 8182-8190. doi:10.1021/acs.nanolett.9b03546.


Cite as: https://hdl.handle.net/21.11116/0000-0005-7300-9
Abstract
Single-molecule localization microscopy (SMLM) has revolutionized optical microscopy, extending resolution down to the level of individual molecules. However, the actual counting of molecules relies on preliminary knowledge of the blinking behavior of individual targets or on a calibration to a reference. In particular for biological applications, great care has to be taken because a plethora of factors influence the quality and applicability of calibration-dependent approaches to count targets in localization clusters particularly in SMLM data obtained from heterogeneous samples. Here, we present localization-based fluorescence correlation spectroscopy (lbFCS) as the first absolute molecular counting approach for DNA-points accumulation for imaging in nanoscale topography (PAINT) microscopy and, to our knowledge, for SMLM in general. We demonstrate that lbFCS overcomes the limitation of previous DNA-PAINT counting and allows the quantification of target molecules independent of the localization cluster density. In accordance with the promising results of our systematic proof-of-principle study on DNA origami structures as idealized targets, lbFCS could potentially also provide quantitative access to more challenging biological targets featuring heterogeneous cluster sizes in the future.