English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Self-healing silk from the sea : role of helical hierarchical structure in Pinna nobilis byssus mechanics

MPS-Authors
/persons/resource/persons222762

Pasche,  Delphine
Matthew Harrington, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons211345

Horbelt,  Nils
Matthew Harrington, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121298

Fratzl,  Peter
Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121387

Harrington,  Matthew J.
Matthew Harrington, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Pasche, D., Horbelt, N., Marin, F., Motreuil, S., Fratzl, P., & Harrington, M. J. (2019). Self-healing silk from the sea: role of helical hierarchical structure in Pinna nobilis byssus mechanics. Soft Matter, 15(47), 9654-9664. doi:10.1039/C9SM01830A.


Cite as: https://hdl.handle.net/21.11116/0000-0005-61C0-4
Abstract
The byssus fibers of Mytilus mussel species have become an important role model in bioinspired materials research due to their impressive properties (e.g. high toughness, self-healing); however, Mytilids represent only a small subset of all byssus-producing bivalves. Recent studies have revealed that byssus from other species possess completely different protein composition and hierarchical structure. In this regard, Pinna nobilis byssus is especially interesting due to its very different morphology, function and its historical use for weaving lightweight golden fabrics, known as sea silk. P. nobilis byssus was recently discovered to be comprised of globular proteins organized into a helical protein superstructure. In this work, we investigate the relationships between this hierarchical structure and the mechanical properties of P. nobilis byssus threads, including energy dissipation and self-healing capacity. To achieve this, we performed in-depth mechanical characterization, as well as tensile testing coupled with in situ X-ray scattering. Our findings reveal that P. nobilis byssus, like Mytilus, possesses self-healing and energy damping behavior and that the initial elastic behavior of P. nobilis byssus is due to stretching and unraveling of the previously observed helical building blocks comprising the byssus. These findings have biological relevance for understanding the convergent evolution of mussel byssus for different species, and also for the field of bio-inspired materials.