English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

SILAC-based quantitative proteomics using mass spectrometry quantifies endoplasmic reticulum stress in whole HeLa cells

MPS-Authors
/persons/resource/persons198325

Itzhak,  Daniel N.
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons192414

Sacco,  Francesca
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78437

Nagaraj,  Nagarjuna
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons82508

Tyanova,  Stefka
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78356

Mann,  Matthias
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons145979

Murgia,  Marta
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

dmm040741.full.pdf
(Any fulltext), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Itzhak, D. N., Sacco, F., Nagaraj, N., Tyanova, S., Mann, M., & Murgia, M. (2019). SILAC-based quantitative proteomics using mass spectrometry quantifies endoplasmic reticulum stress in whole HeLa cells. DISEASE MODELS & MECHANISMS, 12(11): UNSP dmm040741. doi:10.1242/dmm.040741.


Cite as: https://hdl.handle.net/21.11116/0000-0005-A079-E
Abstract
The unfolded protein response (UPR) involves extensive proteome remodeling in many cellular compartments. To date, a comprehensive analysis of the UPR has not been possible because of technological limitations. Here, we employ stable isotope labeling with amino acids in cell culture (SILAC)-based proteomics to quantify the response of over 6200 proteins to increasing concentrations of tunicamycin in HeLa cells. We further compare the effects of tunicamycin (5 mu g/ml) to those of thapsigargin (1 mu M) and DTT (2 mM), both activating the UPR through different mechanisms. This systematic quantification of the proteome-wide expression changes that follow proteostatic stress is a resource for the scientific community, enabling the discovery of novel players involved in the pathophysiology of the broad range of disorders linked to proteostasis. We identified increased expression in 38 proteins not previously linked to the UPR, of which 15 likely remediate ER stress, and the remainder may contribute to pathological outcomes. Unexpectedly, there are few strongly downregulated proteins, despite expression of the pro-apoptotic transcription factor CHOP, suggesting that IRE1-dependent mRNA decay (RIDD) has a limited contribution to ER stress-mediated cell death in our system.