English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effect of water leaching on biochar properties and its impact on organic contaminant sorption

MPS-Authors
/persons/resource/persons58966

Schmidt,  Wolfgang
Research Group Schmidt, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schreiter, I. J., Schmidt, W., Kumar, A., Graber, E. R., & Schüth, C. (2020). Effect of water leaching on biochar properties and its impact on organic contaminant sorption. Environmental Science and Pollution Research, 27(1), 691-703. doi:10.1007/s11356-019-06904-2.


Cite as: http://hdl.handle.net/21.11116/0000-0005-91E9-0
Abstract
When biochar (BC) is applied to soil, one process that can alter its properties and contaminant sorption is the leaching of minerals and dissolved organic carbon (DOC). This study investigated changes in properties of three BCs (cattle manure, grain husk, and wood chips), due to leaching, and the subsequent impact on sorption of trichloroethylene (TCE) and tetrachloroethylene (PCE). The manure-derived BC released 27.4 mg g−1 DOC, which is over ten times more than that measured for the two plant-based BCs (2.5 and 1.5 mg g−1 DOC for grain husk and wood chips, respectively). In all leachates, potassium is the dominant cation, whereas chloride, sulfate, and phosphate are the main anions. In total, the manure-derived biochar released the highest sum of total ions (73.1 mg g−1), followed by BC produced from grain husk (15.5 mg g−1) and wood chips (1.2 mg g−1). Leaching increased external surface area, mesopore volume, and hydrophobicity of the manure-derived BC and decreased its polarity. This enhanced sorption via partitioning. In plant-based BCs, micropore volume and size distribution were altered, most likely through the un-blocking of pores, causing increased sorption via pore-filling for both TCE and PCE. The results indicate that, depending on feedstock material, BC leaching can alter the environmental fate of organic compounds.