Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection

MPG-Autoren
/persons/resource/persons224409

Zwirner,  Lukas
Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173662

Shishkina,  Olga
Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zwirner, L., Khalilov, R., Kolesnichenko, I., Mamykin, A., Mandrykin, S., Pavlinov, A., et al. (2020). The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection. The Journal of Fluid Mechanics, 884: A18. doi:10.1017/jfm.2019.935.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-6C9D-2
Zusammenfassung
Inclined turbulent thermal convection in liquid sodium is studied at large Rayleigh
numbers Ra > 107 based on the results of both experimental measurements and
high-resolution numerical simulations. For a direct comparison, the considered system
parameters are set to be similar: Ra = 1.67 × 107 in the direct numerical simulations
(DNS), Ra = 1.5 × 107 in the large-eddy simulations and Ra = 1.42 × 107 in the
experiments, while the Prandtl number of liquid sodium is very small (Pr ≈ 0.009).
The cylindrical convection cell has an aspect ratio of one; one circular surface is heated, while the other one is cooled. Additionally, the cylinder is inclined with respect to gravity and the inclination angle varies from β = 0°, which corresponds to Rayleigh–Bénard convection (RBC), to β = 90°, as in a vertical convection (VC) set-up. Our study demonstrates quantitative agreement of the experimental and numerical results, in particular with respect to the global heat and momentum transport, temperature and velocity profiles, as well as the dynamics of the large-scale circulation (LSC). The DNS reveal that the twisting and sloshing of the LSC at small inclination angles periodically affects the instantaneous heat transport (up to ±44 % of the mean heat transport). The twisted LSC is associated with a weak heat transport, while the sloshing mode that brings together the hot and cold streams of the LSC is associated with a strong heat transport. The experiments show that the heat transport
scales as Nu ∼ Ra0.22 in both limiting cases (RBC and VC) for Rayleigh numbers around Ra ≈ 107, while any inclination of the cell, 0 < β < 90°, leads to an increase of Nu.