English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Protein-free division of giant unilamellar vesicles controlled by enzymatic activity

MPS-Authors
/persons/resource/persons243718

Dreher,  Yannik
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons220391

Göpfrich,  Kerstin
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dreher, Y., Spatz, J. P., & Göpfrich, K. (2019). Protein-free division of giant unilamellar vesicles controlled by enzymatic activity. bioRxiv, 881557, pp. 1-24. doi:10.1101/2019.12.30.881557.


Cite as: https://hdl.handle.net/21.11116/0000-0005-7011-9
Abstract
Cell division is one of the hallmarks of life. Success in the bottom-up assembly of synthetic cells will, no doubt, depend on strategies for the controlled autonomous division of protocellular compartments. Here, we describe the protein-free division of giant unilamellar lipid vesicles (GUVs) based on the combination of two physical principles – phase separation and osmosis. We visualize the division process with confocal fluorescence microscopy and derive a conceptual model based on the vesicle geometry. The model successfully predicts the shape transformations over time as well as the time point of the final pinching of the daughter vesicles. Remarkably, we show that two fundamentally distinct yet highly abundant processes – water evaporation and metabolic activity – can both regulate the autonomous division of GUVs. Our work may hint towards mechanisms that governed the division of protocells and adds to the strategic toolbox of bottom-up synthetic biology with its vision of bringing matter to life.