English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Landslides on Ceres: Diversity and Geologic Context

MPS-Authors
/persons/resource/persons104104

Nathues,  Andreas
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons187931

Platz,  Thomas
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Duarte, K. D., Schmidt, B. E., Chilton, H. T., Hughson, K. H. G., Sizemore, H. G., Ferrier, K. L., et al. (2019). Landslides on Ceres: Diversity and Geologic Context. Journal of Geophysical Research: Planets, 124(12), 3329-3343. doi:10.1029/2018JE005673.


Cite as: https://hdl.handle.net/21.11116/0000-0006-6880-4
Abstract
Landslides are among the most widespread geologic features on Ceres. Using data from Dawn's Framing Camera, landslides were previously classified based upon geomorphologic characteristics into one of three archetypal categories, Type 1(T1), Type 2 (T2), and Type 3 (T3). Due to their geologic context, variation in age, and physical characteristics, most landslides on Ceres are, however, intermediate in their morphology and physical properties between the archetypes of each landslide class. Here we describe the varied morphology of individual intermediate landslides, identify geologic controls that contribute to this variation, and provide first‐order quantification of the physical properties of the continuum of Ceres's surface flows. These intermediate flows appear in varied settings and show a range of characteristics, including those found at contacts between craters, those having multiple trunks or lobes; showing characteristics of both T2 and T3 landslides; material slumping on crater rims; very small, ejecta‐like flows; and those appearing inside of catenae. We suggest that while their morphologies can vary, the distribution and mechanical properties of intermediate landslides do not differ significantly from that of archetypal landslides, confirming a link between landslides and subsurface ice. We also find that most intermediate landslides are similar to Type 2 landslides and formed by shallow failure. Clusters of these features suggest ice enhancement near Juling, Kupalo and Urvara craters. Since the majority of Ceres's landslides fall in the intermediate landslide category, placing their attributes in context contributes to a better understanding of Ceres's shallow subsurface and the nature of ground ice.