English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Predictable variations in the carbon sinks and atmospheric CO2 growth in a multi-model framework

MPS-Authors
/persons/resource/persons37188

Ilyina,  Tatiana
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons61238

Li,  Hongmei
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons240635

Spring,  Aaron
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37272

Müller,  Wolfgang A.
Decadal Climate Predictions - MiKlip, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

essoar.10504292.1.pdf
(Any fulltext), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ilyina, T., Li, H., Spring, A., Müller, W. A., Bopp, L., Chikamoto, M. O., et al. (in press). Predictable variations in the carbon sinks and atmospheric CO2 growth in a multi-model framework. Geophysical Research Letters, accepted article online: e2020GL090695. doi:10.1029/2020GL090695.


Cite as: http://hdl.handle.net/21.11116/0000-0007-349E-D
Abstract
Inter-annual to decadal variability in the strength of the land and ocean carbon sinks impede accurate predictions of year-to-year atmospheric carbon dioxide (CO2) growth rate. Such information is crucial to verify the effectiveness of fossil fuel emissions reduction measures. Using a multi-model framework comprising prediction systems based on Earth system models, we find a predictive skill for the global ocean carbon sink of up to 6 years. Longer regional predictability horizons and robust spatial patterns are found across single models. On land, a predictive skill of up to 2 years is primarily maintained in the tropics and extra-tropics enabled by the initialization of the physical climate variables towards observations. We further show that anomalies of atmospheric CO2 growth rate inferred from natural variations of the land and ocean carbon sinks are predictable at lead time of 2 years and the skill is limited by the land carbon sink predictability horizon