日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Predictable variations of the carbon sinks and atmospheric CO2 growth in a multi-model framework

MPS-Authors
/persons/resource/persons37188

Ilyina,  Tatiana       
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons61238

Li,  Hongmei       
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons240635

Spring,  Aaron       
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37272

Müller,  Wolfgang A.
Decadal Climate Predictions - MiKlip, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

2020GL090695.pdf
(出版社版), 3MB

付随資料 (公開)

2021_GRL_Ilyina.tar.gz
(付録資料), 25MB

引用

Ilyina, T., Li, H., Spring, A., Müller, W. A., Bopp, L., Chikamoto, M. O., Danabasoglu, G., Dobrynin, M., Dunne, J. P. P., Fransner, F., Friedlingstein, P., Lee, W.-S., Lovenduski, N. S., Merryfield, W. J., Mignot, J., Park, J.-Y., Séférian, R., Sospedra-Alfonso, R., Watanabe, M., & Yeager, S. (2021). Predictable variations of the carbon sinks and atmospheric CO2 growth in a multi-model framework. Geophysical Research Letters, 48:. doi:10.1029/2020GL090695.


引用: https://hdl.handle.net/21.11116/0000-0007-349E-D
要旨
Inter-annual to decadal variability in the strength of the land and ocean carbon sinks impede accurate predictions of year-to-year atmospheric carbon dioxide (CO2) growth rate. Such information is crucial to verify the effectiveness of fossil fuel emissions reduction measures. Using a multi-model framework comprising prediction systems based on Earth system models, we find a predictive skill for the global ocean carbon sink of up to 6 years. Longer regional predictability horizons and robust spatial patterns are found across single models. On land, a predictive skill of up to 2 years is primarily maintained in the tropics and extra-tropics enabled by the initialization of the physical climate variables towards observations. We further show that anomalies of atmospheric CO2 growth rate inferred from natural variations of the land and ocean carbon sinks are predictable at lead time of 2 years and the skill is limited by the land carbon sink predictability horizon