English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Metabolomics should be deployed in identification and characterization of gene-edited crops

MPS-Authors
/persons/resource/persons97147

Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fraser, P. D., Aharoni, A., Hall, R. D., Huang, S., Giovannoni, J. J., Sonnewald, U., et al. (in press). Metabolomics should be deployed in identification and characterization of gene-edited crops. The Plant Journal, 102(5), 897-902. doi:10.1111/tpj.14679.


Cite as: https://hdl.handle.net/21.11116/0000-0005-7698-B
Abstract
Abstract Gene editing techniques are currently revolutionizing biology allowing far greater precision than previous mutagenic and transgenic approaches. They are becoming applicable to a wide range of plant species and biological processes. Gene editing can rapidly improve a range of crop traits including disease resistance, abiotic stress tolerance, yield, nutritional quality and additional consumer traits. Unlike transgenic approaches, however, it is not facile to forensically detect gene-editing events at the molecular level, as no foreign DNA exists in the elite line. These limitations in molecular detection approaches are likely to focus more attention on the products generated from the technology, than the process per se. Rapid advances in sequencing and genome assembly increasingly facilitate genome sequencing as a means of characterizing new varieties generated by gene editing techniques. Nevertheless, subtle edits such as single base changes or small deletions may be difficult to distinguish from normal variation within a genotype. Given these emerging scenarios, downstream ‘omics’ technologies reflective of edited affects, such as metabolomics, need to be utilized in a more prominent manner to fully assess compositional changes in novel foodstuffs. To achieve this goal, metabolomics or “non-targeted metabolite analysis” needs to make significant advances to deliver greater representation across the metabolome. With the emergence of new edited crop varieties we advocate; (i) concerted efforts in the advancement of ‘omics’ technologies such as metabolomics and (ii) redress the use of the technology in the regulatory assessment for metabolically-engineered biotech crops.