Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!DetailsÜbersicht

Verworfen

Zeitschriftenartikel

In-situ synthesis of monodispersed CuxO heterostructure on porous carbon monolith for exceptional removal of gaseous Hg0

MPG-Autoren
/persons/resource/persons240923

Zhang,  Liyuan
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhang, L., Yang, S., Lai, Y., Liu, H., Fan, Y., Liu, C., et al. (2020). In-situ synthesis of monodispersed CuxO heterostructure on porous carbon monolith for exceptional removal of gaseous Hg0. Applied Catalysis B: Environmental, 265: 118556. doi:10.1016/j.apcatb.2019.118556.


Zusammenfassung
Gaseous Hg0 is one of the most deadly and hard-to-dispose pollutants. The oxidation of Hg0 is a promising route, but the rational design and synthesis of highly efficient catalysts still remain grand challenges. Herein, CuO@Cu2O (or CuxO) heterostructured nanoparticles uniformly monodispersing on porous carbon monolith were designed and successfully synthesized using oligo(m-phenylenediamine)-Cu2+ complex as raw material. The CuxO-carbon catalyst contains ∼28 wt% of Cu. Based on density functional theory calculation, the CuO@Cu2O junction interfaces can accelerate the Hg0 oxidation by significantly reducing the energy barriers of reaction. Only 1 mg of the catalyst can catalyze the oxidation of more than 90 % of Hg0 with [HCl] = 0.5 ppm, [O2] = 6 vol%, T = 150 °C. The poisoning effect of either SO2 or H2O on the catalysts is weak. Moreover, a long-term test confirmed that the Hg0 oxidation rate can maintain more than 90 % even in the co-presence of SO2 (5000 ppm) and H2O (10 vol%).