English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Rocky‐Like Behavior of Cometary Landslides on 67P/Churyumov‐Gerasimenko

MPS-Authors
/persons/resource/persons104212

Sierks,  Holger
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons140545

Deller,  Jakob
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons160269

Güttler,  Carsten
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104259

Tubiana,  Cecilia
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lucchetti, A., Penasa, L., Pajola, M., Massironi, M., Brunetti, M. T., Cremonese, G., et al. (2019). The Rocky‐Like Behavior of Cometary Landslides on 67P/Churyumov‐Gerasimenko. Geophysical Research Letters, 46(24), 14336-14346. doi:10.1029/2019GL085132.


Cite as: https://hdl.handle.net/21.11116/0000-0005-DB31-D
Abstract
Landslides have been identified on several solar system bodies, and different mechanisms have been proposed to explain their runout length. We analyze images from the Rosetta mission and report the global characterization of such features on comet 67P/Churyumov‐Gerasimenko's surface. By assuming the height to runout length as an approximation for the friction coefficient of landslide material, we find that on comet 67P, this ratio falls between 0.50 and 0.97. Such unexpected high values reveal a rocky‐type mechanical behavior that is much more akin to Earth dry landslides than to icy satellites' mass movements. This behavior indicates that 67P and likely comets in general are characterized by consolidated materials possibly rejecting the idea that they are fluffy aggregates. The variability of the runout length among 67P landslides can be attributed to the different volatile content located in the top few meters of the cometary crust, which can drive the mass movement.