English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Architecture of Traveling Actin Waves Revealed by Cryo-Electron Tomography

MPS-Authors
/persons/resource/persons78161

Jasnin,  Marion
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77726

Beck,  Florian
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77922

Ecke,  Mary
Gerisch, Günther / Cell Dynamics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons131126

Fukuda,  Yoshiyuki
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons209032

Martinez Sanchez,  Antonio
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77721

Baumeister,  Wolfgang
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78003

Gerisch,  Günther
Gerisch, Günther / Cell Dynamics, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jasnin, M., Beck, F., Ecke, M., Fukuda, Y., Martinez Sanchez, A., Baumeister, W., et al. (2019). The Architecture of Traveling Actin Waves Revealed by Cryo-Electron Tomography. STRUCTURE, 27(8), 1211-1223.e5. doi:10.1016/j.str.2019.05.009.


Cite as: https://hdl.handle.net/21.11116/0000-0005-88A0-C
Abstract
Actin waves are dynamic supramolecular structures involved in cell migration, cytokinesis, adhesion, and neurogenesis. Although wave-like propagation of actin networks is a widespread phenomenon, the actin architecture underlying wave propagation remained unknown. In situ cryo-electron tomography of Dictyostelium cells unveils the wave architecture and provides evidence for wave progression by de novo actin nucleation. Subtomogram averaging reveals the structure of Arp2/3 complex-mediated branch junctions in their native state, and enables quantitative analysis of the 3D organization of branching within the waves. We find an excess of branches directed toward the substrate-attached membrane, and tent-like structures at sites of branch clustering. Fluorescence imaging shows that Arp2/3 clusters follow accumulation of the elongation factor VASP. We propose that filament growth toward the membrane lifts up the actin network as the wave propagates, until depolymerization of oblique filaments at the back causes the collapse of horizontal filaments into a compact layer.