Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Neural View-Interpolation for Sparse Light Field Video

MPG-Autoren
/persons/resource/persons232942

Bemana,  Mojtaba
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45095

Myszkowski,  Karol       
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bemana, M., Myszkowski, K., Seidel, H.-P., & Ritschel, T. (2019). Neural View-Interpolation for Sparse Light Field Video. Retrieved from http://arxiv.org/abs/1910.13921.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-7B16-9
Zusammenfassung
We suggest representing light field (LF) videos as "one-off" neural networks
(NN), i.e., a learned mapping from view-plus-time coordinates to
high-resolution color values, trained on sparse views. Initially, this sounds
like a bad idea for three main reasons: First, a NN LF will likely have less
quality than a same-sized pixel basis representation. Second, only few training
data, e.g., 9 exemplars per frame are available for sparse LF videos. Third,
there is no generalization across LFs, but across view and time instead.
Consequently, a network needs to be trained for each LF video. Surprisingly,
these problems can turn into substantial advantages: Other than the linear
pixel basis, a NN has to come up with a compact, non-linear i.e., more
intelligent, explanation of color, conditioned on the sparse view and time
coordinates. As observed for many NN however, this representation now is
interpolatable: if the image output for sparse view coordinates is plausible,
it is for all intermediate, continuous coordinates as well. Our specific
network architecture involves a differentiable occlusion-aware warping step,
which leads to a compact set of trainable parameters and consequently fast
learning and fast execution.