English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The morphological, elastic, and electric properties of dust aggregates in comets: A close look at COSIMA/Rosetta’s data on dust in comet 67P/Churyumov-Gerasimenko

MPS-Authors

Kimura,  Hiroshi
Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103964

Hilchenbach,  Martin
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons146374

Merouane,  Sihane
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons146377

Paquette,  John
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104232

Stenzel,  Oliver Joachim
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kimura, H., Hilchenbach, M., Merouane, S., Paquette, J., & Stenzel, O. J. (2020). The morphological, elastic, and electric properties of dust aggregates in comets: A close look at COSIMA/Rosetta’s data on dust in comet 67P/Churyumov-Gerasimenko. Planetary and Space Science, 181: 104825. doi:10.1016/j.pss.2019.104825.


Cite as: https://hdl.handle.net/21.11116/0000-0005-7C45-3
Abstract
The Cometary Secondary Ion Mass Analyzer (COSIMA) onboard ESA’s Rosetta orbiter has revealed that dust particles in the coma of comet 67P/Churyumov-Gerasimenko are aggregates of small grains. We study the morphological, elastic, and electric properties of dust aggregates in the coma of comet 67P/Churyumov-Gerasimenko using optical microscopic images taken by the COSIMA instrument. Dust aggregates in COSIMA images are well represented as fractals in harmony with morphological data from MIDAS (Micro-Imaging Dust Analysis System) and GIADA (Grain Impact Analyzer and Dust Accumulator) onboard Rosetta. COSIMA’s images, together with the data from the other Rosetta’s instruments such as MIDAS and GIADA do not contradict the so-called rainout growth of -sized particles in the solar nebula. The elastic and electric properties of dust aggregates measured by COSIMA suggest that the surface chemistry of cometary dust is well represented as carbonaceous matter rather than silicates or ices, consistent with the mass spectra, and that organic matter is to some extent carbonized by solar radiation, as inferred from optical and infrared observations of various comets. Electrostatic lofting of cometary dust by intense electric fields at the terminator of its parent comet is unlikely, unless the surface chemistry of the dust changes from a dielectric to a conductor. Our findings are not in conflict with our current understanding of comet formation and evolution, which begin with the accumulation of condensates in the solar nebula and follow with the formation of a dust mantle in the inner solar system.