English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

Local features bootstrap gist perception of scenes

MPS-Authors
/persons/resource/persons84180

Ruppertsberg,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84259

Tjan,  BS
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ruppertsberg, A., Tjan, B., & Bülthoff, H. (2003). Local features bootstrap gist perception of scenes. In 4th AVA Natural Images Meeting 2003.


Cite as: https://hdl.handle.net/21.11116/0000-0005-7ED5-E
Abstract
Natural scenes have a complex structure in terms of the variety of objects they contain and the spatial arrangements of these objects. Yet, visual perception of scenes appears to be automatic and rapid (Biederman, 1972; Potter, 1975, 1976). We used a rapid priming paradigm to investigate if local structures are used during the first milliseconds to bootstrap scene processing for obtaining the gist of a briefly presented natural scene. Local structure we defined as visual information that survives image scrambling with intact units of 1.4 degree in size. ‘Gist’ is the information, which allows an observer to perform scene categorisation defined by choosing a target from the test scene as a response prompt, and not a distractor from a very different scene. In our experiments, a scrambled version of the test scene (42 ms) was presented before the onset of the intact scene (28ms), followed by a mask.
Results: The scrambled frame significantly facilitates the perception of the gist of a scene but the facilitation is incomplete (Exp. 1). This facilitation is not due to luminance and colour distributions (Exp. 2), and significant facilitation occurs only when the scrambled frame is presented immediately before or after the intact frame (Exp. 3). Lastly, local structure of one scene can facilitate the perception of a similar scene, but the effect is significantly reduced. Taken together, our results suggest that local structures have a significant contribution to rapid scene perception, and rapid scene perception relies on the integration of diverse sources of information that are available within a brief time frame.