English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Predicting forest cover in distinct ecosystems: The potential of multi-source sentinel-1 and -2 data fusion

MPS-Authors
/persons/resource/persons226522

Heckel,  Kai
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62472

Mahecha,  Miguel D.
Empirical Inference of the Earth System, Dr. Miguel D. Mahecha, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC3209.pdf
(Publisher version), 26MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Heckel, K., Urban, M., Schratz, P., Mahecha, M. D., & Schmullius, C. (2020). Predicting forest cover in distinct ecosystems: The potential of multi-source sentinel-1 and -2 data fusion. Remote Sensing, 12(2): 302. doi:10.3390/rs12020302.


Cite as: https://hdl.handle.net/21.11116/0000-0005-8174-6
Abstract
There is no abstract available