English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Thesis

Modelling and Control of a Cable-Driven Parallel Robot Methods for vibration reduction and motion quality improvement

MPS-Authors
/persons/resource/persons192734

Schenk,  CT
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schenk, C. (2019). Modelling and Control of a Cable-Driven Parallel Robot Methods for vibration reduction and motion quality improvement. PhD Thesis, Universität Stuttgart, Stuttgart, Germany.


Cite as: https://hdl.handle.net/21.11116/0000-0005-822C-7
Abstract
Seilroboter können aufgrund ihrer parallel Struktur und dem Aufbau ihrer Antriebsstränge hohe Beschleunigungen erreichen und besitzen einen großen Arbeitsraum. Beide Eigenschaften ermöglichen den Einsatz als Simulatoren. Durch die Verwendung als Simulator ergeben sich jedoch neue Herausforderungen und Aufgabenstellungen. Zu diesen zählen Robustheit, präzises Folgeverhalten von Positionen, Geschwindigkeiten und Beschleunigungen und eine schwingungsarme Betriebsart. Seile neigen aufgrund ihrer physikalischen Eigenschaften zu Schwingungen, die an die Platform weitergegeben werden und dadurch die Simulationsqualität negativ beeinflussen. Desweiteren können statische Reibung und aggressive Regelungsstrategien Impulse applizieren, die Schwingungen am Antriebsstrang provizieren. Diese Arbeit beschäftigt sich mit Methoden zur Reduzierung dieser Schwingungen und damit mit Maßnahmen zur Verbesserung der Folgeverhaltens. Die gewählten Methoden, diese liegen im Bereich der nichtlinearen robusten Regelung via Sliding-Mode Controllern, modellbasierter Vorsteuerung, Reibungskompensation, Zustandsbeobachtung mit Unscented Kalman-Filtern und Modellierung sowie Regler-Synthese basierend auf Port-Hamilton Modellierung. In Experimenten an zwei Seilrobotern mit paralleler Kinematik werden die vorgeschlagenen Reglerstrukturen und Modelle verifiziert und stellen deren Effizienz deutlich dar.