Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multiscale change-point segmentation: beyond step functions.

MPG-Autoren
/persons/resource/persons32719

Munk,  A.
Research Group of Statistical Inverse-Problems in Biophysics, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

3188375.pdf
(Verlagsversion), 888KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Li, H., Guo, Q., & Munk, A. (2019). Multiscale change-point segmentation: beyond step functions. Electronic Journal of Statistics, 13(2), 3254-3296. doi:10.1214/19-EJS1608.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-867A-B
Zusammenfassung
Modern multiscale type segmentation methods are known to detect multiple change-points with high statistical accuracy, while allowing for fast computation. Underpinning (minimax) estimation theory has been developed mainly for models that assume the signal as a piecewise constant function. In this paper, for a large collection of multiscale segmentation methods (including various existing procedures), such theory will be extended to certain function classes beyond step functions in a nonparametric regression setting. This extends the interpretation of such methods on the one hand and on the other hand reveals these methods as robust to deviation from piecewise constant functions. Our main finding is the adaptation over nonlinear approximation classes for a universal thresholding, which includes bounded variation functions, and (piecewise) Holder functions of smoothness order 0 < alpha <= 1 as special cases. From this we derive statistical guarantees on feature detection in terms of jumps and modes. Another key finding is that these multiscale segmentation methods perform nearly (up to a log-factor) as well as the oracle piecewise constant segmentation estimator (with known jump locations), and the best piecewise constant approximants of the (unknown) true signal. Theoretical findings are examined by various numerical simulations.