Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Unraveling the mechanics of thermal stress weathering: rate-effects, size-effects, and scaling laws

MPG-Autoren
/persons/resource/persons208394

Ali-Lagoa,  Victor
Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ravaji, B., Ali-Lagoa, V., Delbo, M., & JustinW.Wilkerson (2019). Unraveling the mechanics of thermal stress weathering: rate-effects, size-effects, and scaling laws. Journal of Geophysical Research - Space Physics, 124(2). doi:10.1029/2019JE006019.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-869A-6
Zusammenfassung
Thermal stress weathering is now recognized to be an active and significant geomorphological process on airless bodies. This study aims to understand the key factors governing thermal stresses in rocks on airless bodies through extensive numerical calculations and analytic analyses. Microscopic (grain‐scale) thermal stresses are driven primarily by the maximum diurnal temperature variation at said depth. Macroscopic (rock‐scale) thermal stresses are more complex. For rock sizes larger than the thermal skin depth, macroscopic thermal stresses are driven primarily by second (and higher) order spatial gradients of temperature. For rock sizes smaller than the thermal skin depth, macroscopic thermal stresses are primarily driven by the ratio of rock size to thermal skin depth. Additionally, scaling relations for diurnal surface temperature variation, time‐rate‐of‐change of surface temperature, as well as peak microscopic (grain‐scale) and macroscopic (rock‐scale) thermal stresses are derived to provide a more accessible modeling tool. These scaling relations are remarkably accurate when compared to both the numerical calculations as well as three‐dimensional finite element calculations. The model formulation, results, and scaling relations provided here allow the estimation of diurnal temperatures and thermal stresses on rocks of various size and materials on airless bodies at any orbital distance with a broad spectrum of spin rates. Lastly, we postulate and confirm that there is a critical spin rate where macroscopic thermal stresses will be greatest.