English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Efficiently and Effectively Recognizing Toricity of Steady State Varieties

MPS-Authors
/persons/resource/persons73108

Sturm,  Thomas       
Automation of Logic, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

arXiv:1910.04100.pdf
(Preprint), 714KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Grigoriev, D., Iosif, A., Rahkooy, H., Sturm, T., & Weber, A. (2019). Efficiently and Effectively Recognizing Toricity of Steady State Varieties. Retrieved from http://arxiv.org/abs/1910.04100.


Cite as: https://hdl.handle.net/21.11116/0000-0005-890F-1
Abstract
We consider the problem of testing whether the points in a complex or real
variety with non-zero coordinates form a multiplicative group or, more
generally, a coset of a multiplicative group. For the coset case, we study the
notion of shifted toric varieties which generalizes the notion of toric
varieties. This requires a geometric view on the varieties rather than an
algebraic view on the ideals. We present algorithms and computations on 129
models from the BioModels repository testing for group and coset structures
over both the complex numbers and the real numbers. Our methods over the
complex numbers are based on Gr\"obner basis techniques and binomiality tests.
Over the real numbers we use first-order characterizations and employ real
quantifier elimination. In combination with suitable prime decompositions and
restrictions to subspaces it turns out that almost all models show coset
structure. Beyond our practical computations, we give upper bounds on the
asymptotic worst-case complexity of the corresponding problems by proposing
single exponential algorithms that test complex or real varieties for toricity
or shifted toricity. In the positive case, these algorithms produce generating
binomials. In addition, we propose an asymptotically fast algorithm for testing
membership in a binomial variety over the algebraic closure of the rational
numbers.