Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Terahertz-Magnetic-Field Induced Ultrafast Faraday Rotation of Molecular Liquids

MPG-Autoren
/persons/resource/persons186099

Balos,  Vasileios
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons238931

Bierhance,  Genaro
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons79062

Sajadi,  Mohsen
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevLett.124.093201.pdf
(Verlagsversion), 618KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Balos, V., Bierhance, G., Wolf, M., & Sajadi, M. (2020). Terahertz-Magnetic-Field Induced Ultrafast Faraday Rotation of Molecular Liquids. Physical Review Letters, 124(09): 093201. doi:10.1103/PhysRevLett.124.093201.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-931F-3
Zusammenfassung
Rotation of the plane of the polarization of light in the presence of a magnetic field, known as the Faraday rotation, is a consequence of the electromagnetic nature of light and has been utilized in many optical devices. Current efforts aim to realize the ultrafast Faraday rotation on a sub-picosecond time scale. To this end, the Faraday medium should allow an ultrafast process by which in the presence of an ultrashort intense magnetic field, the light polarization rotates. We meet the criteria by applying an intense single cycle THz mag-netic-field to simple molecular liquids and demonstrate the rotation of the plane of polarization of an optical pulse traversing the liquids on a sub-picosecond time scale. The effect is attributed to the de-flection of an optically induced instantaneous electric polarization under the influence the THz magnetic field. The resolved Faraday rotation scales linearly with the THz magnetic field and quadrati-cally with the molecular polarizability.