English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An ER assembly line of AMPA-receptors controls excitatory neurotransmission and its plasticity

MPS-Authors
/persons/resource/persons92385

Bus,  Thorsten
Max Planck Research Group Behavioural Neurophysiology (Andreas T. Schaefer), Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95439

Sprengel,  Rolf
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;
Olfaction Web, Max Planck Institute for Medical Research, Max Planck Society;
Rolf Sprengel Group, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schwenk, J., Boudkkazi, S., Kocylowski, M. K., Brechet, A., Zolles, G., Bus, T., et al. (2019). An ER assembly line of AMPA-receptors controls excitatory neurotransmission and its plasticity. Neuron, 104(4): e9, pp. 680-692. doi:10.1016/j.neuron.2019.08.033.


Cite as: https://hdl.handle.net/21.11116/0000-0005-9487-B
Abstract
Excitatory neurotransmission and its activity-dependent plasticity are largely determined by AMPA-receptors (AMPARs), ion channel complexes whose cell physiology is encoded by their interactome. Here, we delineate the assembly of AMPARs in the endoplasmic reticulum (ER) of native neurons as multi-state production line controlled by distinct interactome constituents: ABHD6 together with porcupine stabilizes pore-forming GluA monomers, and the intellectual-disability-related FRRS1l-CPT1c complexes promote GluA oligomerization and co-assembly of GluA tetramers with cornichon and transmembrane AMPA-regulatory proteins (TARP) to render receptor channels ready for ER exit. Disruption of the assembly line by FRRS1l deletion largely reduces AMPARs in the plasma membrane, impairs synapse formation, and abolishes activity-dependent synaptic plasticity, while FRRS1l overexpression has the opposite effect. As a consequence, FRSS1l knockout mice display severe deficits in learning tasks and behavior. Our results provide mechanistic insight into the stepwise biogenesis of AMPARs in native ER membranes and establish FRRS1l as a powerful regulator of synaptic signaling and plasticity.